
Virtual ECUs Used to Develop Renault’s
Engine Management Software

In 2016, Renault started to use virtual Electronic Control Units to aid the development of engine

management software. Developers of the OEM can now simulate and calibrate the entire engine control

on a PC even before real ECU hardware with production C code becomes available. Renault and QTronic

describe how this changes the deve lopment process.

MOTIVATION

Renault develops most of the Engine
Management Software (EMS) for its
diesel and gasoline engines in-house.
To this end, a model-based development
process based on Matlab/Simulink
has been established since 2010 [2-4].
This process is shown in FIGURE 1.

In 2014, a critical assessment of the
process revealed a weak point: When
function developers edit one of the 200
modules of the EMS, they must wait for
weeks until they receive the results of
ECU tests, FIGURE 1 (blue line). Until
then, only the testing of single modules
(green line) on PC is possible. However,
module tests take only few interactions
of the module under test with other mod-

ules of the EMS into account. Conse-
quently, integration problems are often
discovered late, when ECU test results
become available. It would be much
better to test a module in full system
context immediately after a change
of the module and before the module is
released to the next process step. Renault
then decided to integrate virtual ECUs
(vECU) into the development process
to enable early validation and test of
modules in system context, FIGURE 1
(red line).

To implement the idea, Renault invited
leading providers of tools for the vir -
tualization of ECUs to participate in a
benchmark. Participants were asked
to use their tool to setup an incremental
process for building a virtual ECU from

200 modules (Simulink models) of the
EMS. Main selection criteria were the
time needed to configure an initial
setup, the time needed for the incremen-
tal rebuild of a vECU and the execution
speed of the resulting vECU. In this
process, the vECU tool Silver (by QTronic
[1]) was selected to implement the
desired improvement.

VIRTUALIZATION OF
THE RENAULT EMS

Today, Model-based Development (MBD)
on PC is the established method of
choice for developing control software
for automotive powertrains. Surprisingly,
the dominance of MBD does not mean
that developers are typically able to sim-

© QTronic

Processes and Methods

DEVELOPMENT PROCESSES AND METHODS

36

ulate their ECU on PC, even if they have
full access to all models of the ECU. For
example, loading and initializing all 200
modules of a typical Renault EMS into
64-bit Simulink takes more than 10 h.
Interactive simulation of a module in
full ECU context is clearly out of reach
then. The only way to achieve reasonable
execution times is to apply compilation
techniques, either within the Simulink
environment, or (as done here), in a
Simu link external integration environ-
ment, based on exported C code. As the
case study presented here shows, such a
compiled environment is not straight for-
ward to set up. In our case, it took many
months. It seems that developers have
therefore widely accepted the fact, that
they cannot run the ECU model inside
their model-based IDE. Instead, they
must wait until the C code generated by

the models has been integrated with the
target ECU hardware, and the ECU
 software can be executed on an HiL
 system. Of course, this practice funda-
mentally contradicts the idea of MBD
which is about executable models whose
behaviour can be explored and assessed
during design.

Renault has now implemented an
incremental process to build virtual
ECUs. Incremental means to build a
vECU from given 200 modules by gener-
ating C code only for those modules that
have been edited since the previous
build. This way, an vECU can be built
within a few minutes.

 The build process is shown in
FIGURE 2. For each of the 200 modules,
a Simulink wrapper model is generated
automatically that fixes the datatype of
each input and output to a configured

datatype and provides a signal interface
to the Operating system (Os). The wrap-
per model and the wrapped module is
then translated into C code. For this step,
Simulink Coder is used, not Embedded
coder which is more expensive and
hence not available for function develop-
ers. Finally, the resulting C code is com-
piled for Windows PC to be executed by
the vECU using Silver’s Os. The Silver
Os supports periodic and event-triggered
tasks, such as initial and crankshaft-
synchronous ones.

 The resulting vECU can be executed
with different calibration data sets. Cali-
bration data is read by the vECU from
the file system at runtime. This enables
pre-calibration of all EMS modules on
PC. In Silver, the vECU typically runs
in closed-loop with an engine model,
FIGURE 3. Renault currently uses models

AUTHORS

Yohan Jordan
is Development Engineer for

 Powertrain Control Software Tools at
Renault S.A. in Paris (France).

Dirk von Wissel
is Expert in Powertrain

Control Functional Architecture
at Renault S.A. in Paris (France).

Adrian Dolha
is Engineer at QTronic

Software S.R.L in
Cluj-Napoca (Romania).

Dr. Jakob Mauss
is Managing Director at

QTronic GmbH in Berlin
(Germany).

Processes and Methods

FIGURE 1 Virtual ECU used to frontload system-level validation and test (© QTronic)

ATZ elektronik worldwide 05|2018 37

developed with LMS Amesim (Siemens)
for use on HiL test systems. Such models
also run in Silver. This way, control
loops of the EMS can be analysed and
tuned on PC.

Silver loads and initializes a vECU of
the Renault EMS in less than 5 s. Execu-
tion time depends mostly on the number
of variables measured during simulation.
When measuring just 170 variables per
ms, the vECU runs four times faster than
real time on a typical PC. When measur-
ing 20000 variables per ms, execution
time is three times slower than real time.

DIFFERENCES BETWEEN
REAL AND VIRTUAL ECU

A vECU is a model of the real ECU. Con-
sequently, not all properties of the real
ECU are visible in the virtual ECU. This
means that not all tests that are relevant
can also be moved to the PC. For some
tests, access to real ECU hardware is
needed. The most crucial differences
between real and virtual ECU are:
 – Timing: The virtual ECU behaves
like a device with unlimited comput-
ing power. Silver does not attempt
to predict the time that a task would
take to run on the real ECU hardware.
Instead, Silver assumes that the task
runs entirely within a single point
in time, not a time interval. Conse-
quently, a task running on a vECU
cannot be interrupted by another
task. Instead, the vECU runs all tasks
exactly at the configured time points,
either periodically or at specified
events. A Silver vECU can therefore
not be used to check whether the
real ECU provides sufficient comput-
ing power to meet given real time
requirements.

 – Basic software: In the way it is
employed to interact with sensors,
actuators and buses, basic software
is not hosted by the vECUs currently
used by Renault for engine develop-

ment. Consequently, basic software
cannot currently be tested using
vECUs. This is by no means a restric-
tion of vECUs as such but rather a
conse quence of the work flow shown
in FIGURE 1: A vECU is derived here
early from given Simulink models,
while basic software becomes only
available weeks later during plat-
form integration.

 – Production code: A vECU as used
here runs C code generated with
 Simulink Coder, while the real ECU
runs C code generated with Embedded
Coder. Both program codes differ and
might hence show different behaviour
at runtime. Again, this is not a restric-
tion of vECUs, but a consequence of
the build process depicted in FIGURE 2.

APPLICATIONS OF
VIRTUAL ECUS AT RENAULT
ENGINE DEVELOPMENT

In 2016, Renault created the first fully
functional virtual EMS using the process
described above. The process has been
repeated for about six releases (updates
and different platforms) of the EMS soft-
ware since then. The following applica-
tions of virtual ECUs have been imple-
mented so far.

MODULE DEVELOPMENT
IN SYSTEM CONTEXT

A virtual ECU can be configured at
 compile time for co-simulation with
Simulink. At runtime, Simulink run
then the module selected at compile
time, bypassing the corresponding
module in the vECU, while all other
200 modules are executed by the
vECU. The module developer can edit
his module in Simulink and run the
resulting virtual ECU immediately,
 without rebuilding it. This way, the
effect of an edit on behavior can
 immediately be seen by the developer

in the context of all modules of the
ECU. Rebuild of the vECU is only
required when the signal interface
for the edited module changes, or to
get more recent implementations of
other modules into the validation
loop. Thanks to incremental build,
such a rebuild takes only minutes.

PRE-CALIBRATION

About 50 % of the development time
for engine controllers is spent for engine
calibration, i.e. tuning of thousands
of parameter, characteristic curves and
maps of the engine control software.
With virtual ECUs, Renault started to
frontload calibration related activities
as well. This is called pre-calibration.
The objective is to develop better start
values for calibration to gain more
time for fine tuning in later phases of
development, when calibration is per-
formed using real hardware. A Silver
virtual ECU loads calibration data at
runtime from a human readable text
file. A calibration engineer can then
vary parameters dynamically during
closed-loop simulation using sliders pro-
vided by Silver (online tuning).

VIRTUAL INTEGRATION OF
MODULES INTO THE ECU

Virtualization enables all 200 modules
to be integrated into a single virtual ECU
and the entire EMS to be tested in closed
loop with an engine simulation even
before generating production C code.
This way, integration problems and
errors in modules can be detected weeks
earlier. To exploit this idea, simulation
results recorded on an HiL test system
are currently compared with simulation
results computed on PC using a virtual
ECU for sufficiently similar versions
of EMS software and calibration data.
Unexpected differences quickly point to
potential problems.

FIGURE 2 Automated process to
build a virtual ECU (© QTronic)

DEVELOPMENT PROCESSES AND METHODS

38

SUPPORT JOINT DEVELOPMENT
WITHIN THE RENAULT-NISSAN
PARTNERSHIP

Renault and Nissan jointly develop cer-
tain EMS modules. The development of
a shared set of reusable EMS modules
requires rework of interfaces and meth-
odologies on both sides. In this context,
Silver virtual ECUs are currently used as
a platform for virtual integration of mod-
ules. This helps to discover and elimi-
nate integration problems earlier.

VEHICLE-LEVEL SIMULATION

Renault and Nissan use the Digital
Electronic Integration PlatForm (D-EIPF
[5]) to validate networked ECUs in vehi-
cle context. D-EIPF has been developed
in-house since 2010. With D-EIPF, the
communication behavior of networked
ECUs of an entire vehicle can be simu-
lated without the need to access real
ECU or vehicle hardware. Silver has

been integrated into the D-EIPF
environment. This way, much more
realistic engine models become avail-
able in D-EIPF, which increases the
scope of tests that can be executed
on D-EIPF.

A vECU could also be used to
validate and quantify system require-
ments for projected engine systems.
However, this is currently not a use
case at Renault.

CONCLUSION

Renault started to use virtual ECUs
to frontload test and calibration
related activities during the develop-
ment of engine management software.
This helps to detect problems earlier,
increases the quality of the models
and shortens development cycles.
In a next step, the existing MiL-based
virtual ECUs will be complemented
by SiL-based virtual ECUs. The latter
are based on production C code

and will contain basic software as
well, which further minimizes the
behavioral gap between real and
virtual ECUs. This will make it possible
to move even more development steps
to the virtual platform.

REFERENCES
[1] Linssen, R.; Uphaus, F.; Mauss, J.: Simulation
of Networked ECUs for Drivability Calibration. In:
ATZelektronik worldwide (2011), No. 4, pp. 16-21
[2] von Wissel, D.; Moreno Lahore, P.: Renault
Model-Based Design – Powertrain control deve-
lopment process. 23rd International AVL Confer-
ence Engine & Environment, Graz, Austria,
September 8 to 9, 2011
[3] Dressler, J. M.: A Walk through EMS 2010
Modular Software Development. 4th European
Congress ERTS, Toulouse, 2008
[4] von Wissel, D. ; Quelin, J-M.: Industrial use
of HIL Engine Management System validation.
9th Symposium Automotive Powertrain Control
Systems, Berlin, September 20 to 21, 2012
[5] Watanabe, A.; Sotome, A.: Functional Deve-
lopment Methodology for On-Board Distributed
ECU Systems for Production Vehicle Application.
In: SAE Int. J. Passeng. Cars – Electron. Electr.
Syst. 5(2):492-500, 2012, https://doi.org/
10.4271/2012-01-0929

FIGURE 3 Virtual ECU of Renault EMS connected to engine model (© QTronic)

ATZ elektronik worldwide 05|2018 39

